StedAIR ${ }^{\circ}$

Stedilisi ${ }^{\circ}$

Feuchtigkeitssperren

Sicherheit, der Sie vertrauen können. Beständigkeit, wenn es darauf ankommt.

Stedair ${ }^{\circledR}$ 3000d Feuchtigkeitssperre besteht aus einem Meta-Aramidund Para-Aramid-Substrat mit Silikongummi-Punkten, die auf eine Zweikomponenten-Polytetrafluorethylen (PTFE) / Polyurethan (PU) -Membranmatrix laminiert sind. Das Polyurethan ist exponiert, um die Nahtbewegung und Nahtdelaminierung zu minimieren

Stedair ${ }^{\circledR} 3000$ d feuchtigkeitsbarriere erfüllt und übertrifft die anforderungen der en 469 Stufe 2 und ist zusätzlich nach AS 4967 zertifiziert

Produktvorteile von STEDAIR® 3000d

- PTFE-Bi-Komponenten-Technologie mit proprietärem Silikon-DOT-System
- Zertifizierte Resistenz gegen durch Blut übertragbare Krankheitserreger und Viren (IS016604)
- Zertifizierte Beständigkeit gegen Chemikalien nach EN 469 und AS 4967
- Überlegene Abriebfestigkeit
- Unübertroffener Wasserdampf-Widerstand (ISO 11092)

Specification			
Characteristics	Test Method	AS 4967 Requirement	Stedair ${ }^{\text {® }}$ 3000D
Face Ignition**	ISO $15025(\mathrm{pa})$ After 5 wash-dry cycles	No specimen shall give hole formation No specimen shall give molten or flaming debris The mean value of the afterflame shall be $\leq 2 \mathrm{~s}$ The mean value of the afterglow shall be ≤ 2 s	No holes No molten or flaming debris 0.9 s 0.3 s
Heat Resistance	EN ISO 17493:2000 $260^{\circ} \mathrm{C}$ for 5 mins After 5 wash-dry cycles	Materials shall not ignite or melt Shrinkage \% < 5	No melt, drip, separation or ignition Shrinkage \% = < 1
Resistance to Water Penetration	EN 20811: 1992 (1996) After 5 wash-dry cycles	$\geq 200 \mathrm{~cm}$	$>400 \mathrm{~cm}$
Dimensional Change	EN ISO 5077:2008 The assembly is washed and the shrinkage of each individual component is assessed	Shrinkage \% Max $\pm 3 \%$	$\begin{aligned} & \text { Shrinkage \% } \\ & \text { L: < } 1 \% \\ & \text { W: <2 \% } \end{aligned}$
Heat Transfer (Flame) **	ISO 9151:1995	$\begin{aligned} & \text { HTI24 } \geq 17 \mathrm{~s} \\ & \text { HTI24-12 } \geq 4 \mathrm{~s} \end{aligned}$	$\begin{aligned} & \mathrm{HTI} 24 \quad \geq 18 \mathrm{~s} \\ & \text { HTI24-12 } \geq 5 \mathrm{~s} \end{aligned}$
Heat Transfer (Radiant) **	ISO 6942:2002 Method B using a Heat Flux of $40 \mathrm{~kW} / \mathrm{m}^{2}$	$\begin{aligned} & \text { +24 } \geq 22 \mathrm{~s} \\ & \text { +24-112 } \geq 4 \mathrm{~s} \\ & \text { Mean T.F }<60 \% \end{aligned}$	$\begin{aligned} & +24 \geq 27 \mathrm{~s} \\ & +24-112 \geq 8 \mathrm{~s} \\ & \text { Mean } \mathrm{T} . \mathrm{F} \leq 20 \% \end{aligned}$
Resistance to penetration by liquid chemicals **	EN ISO 6530:2005 1. $40 \% \mathrm{NaOH}$ 2. $36 \% \mathrm{HCl}$ 3. $30 \% \mathrm{H} 2 \mathrm{SO} 4$ 4. 100% o-xylene	No penetration to innermost surface. Repellency rate > 80\%	1. >95 2. >95 3. >95 4. >95 No penetration
Water Vapour Resistance (Ret) **	EN ISO 31092:1993	Level $1>30 \mathrm{~m}^{2} \cdot \mathrm{~Pa} / \mathrm{W}$ Level $2 \leq 30 \mathrm{~m}^{2} \cdot \mathrm{~Pa} / \mathrm{W}$	$\begin{aligned} & \text { Barrier Only }=<8 \mathrm{~m}^{2} \cdot \mathrm{~Pa} / \mathrm{W} \\ & \text { Composite }=<15 \mathrm{~m}^{2} \cdot \mathrm{~Pa} / \mathrm{W} \end{aligned}$

[^0]
[^0]: ** tested in composite form

